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ABSTRACT

A simplified model of the Navy's underway replenishment operation

is investigated by using a multi- stage cyclic queueing model to ap=

proximate the process. A computer simulation of a more realistic

model is performed to generate data which is compared with the cyclic

queue results. The cases for M = 2 and N = 10, 15, 20 with various

service rates are considered, where M is the number of ships in the

underway replenishment group, and N is the size of the combatant force

being replenished. The following two measures of effectiveness are con=

sidered:

(1) T, the time required for the underway replenishment group to

process N combatant force ships*

(2) WC, the number of combatant force ship-hours required for the

replenishment.

The cyclic queue and computer simulation results agree reasonably well

for a balanced system. However, in general, the cyclic queue results

provide only an upper bound for the computer simulation results.

The simulation model demonstrates for the balanced system that

those combinations of initial starting sequences which result in the

lowest values of T also result in the highest values for WC. The con-

verse, that is, low values of WC resulted in high values of T, was also

shown to hold for the simulation model.
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1. Introduction to the Queueing Problem*

A common phenomenon occurring in everyday life is that of "queueing"

or waiting in a line. Queues (waiting lines) form, for example, at bus

stops, supermarket counters, and ticket booths* Queues are also found

in the Navy, such as on the mess deck where men wait to receive their

food and eat, in storerooms where the parts wait to be used, and in

underway replenishment operations where combatant ships wait to re-

ceive food, fuel, and ammunition from the ships of an underway replen-

ishment group. It is this latter operation which we will investigate,

The theory of queues is concerned with the development of mathe-

matical models for examining the behavior of systems that provide ser-

vice for randomly arising demands. In a wider sense it deals with the

investigation of the probability law of different processes occurring

in connection with mass servicing in cases where random fluctuations

occur. The practical aim in investigating a queueing system is to im-

prove the system by changing it in some way.

The problems responsible for the theory of queues seem to have

arisen in the telephone industry and the work of A. K, Erlang on tele-

phone traffic problems, carried out as early as 1908, constitutes the

first major contribution to the theory of queues.

Queueing occurs when demands for service are greater than avail-

ability of service, and it becomes necessary to postpone the demands by

a system of queueing or marshalling. While queueing is a natural proc-

ess, marshalling is an attempt to do something about it. Queueing is

Queueing theory is the label preferred by the British and Indians who
have been particularly active in the mathematical analysis of the process.



essentially a temporary phenomenon, as otherwise the queue would grow in-

definitely in size Thus, one of the first problems in any queueing sit-

uation is to determine whether or not the demand will outstrip the ser-

vice mechanism a When this does not happen, so that the queue is con-

tinually returning to zero size, then the situation is said to be "in

equilibrium", or in statistical terminology , the process is "station-

ary". When the demand equals the service capabilities the situation

becomes very delicately balanced; a slight reduction in demand yields

a sensible queueing system that can attain equilibrium, while a slight

increase results in an ever lengthing queue

„

The theory has been applied to a number of problems seemingly

diverse in nature, but most deal with the following type situation:

A "customer" arrives at the "counter" and demands service < If the

server is busy with another customer, the newly arrived customer must

wait until the server is free a In the meantime, other customers may

arrive at the service If customers arrive when the server is busy,

they must form a queue or waiting line until service is available a Here

we use the terms "customer" and "counter" in a generic sense In the

present paper they will correspond to combatant ship and replenishment

ship respective ly«
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2, Series of Queues

„

The majority of the published studies of queues deal with the type

of problem in which one service operation is performed on each customer,

although one or more service channels in parallel may be involved^ A

more general type of problem, which has not been treated so extensively,

is one in which customers are served at each of a number of counters ar-

ranged in series; every customer begins service at a first counter and

continues through the system, receiving attention at all others, until

he is discharged at a last counter , Series of queues or queues in

tandem occur in a variety of applications One example is that of cus-

tomers in a store who must first be waited on by sales clerks and then,

after being served by these clerks, must then be served by wrappers or

cashiers. Another example is the U,S Navy's at sea replenishment op-

eration in which combatant ships must receive fuel, food, and ammuni-

tion from the underway replenishment group (URG) which is composed of

ships that individually can supply only fuel, only food, only stores, or

only ammunition 6 Combatant ships which require all three of these ser-

vices thus become involved in a tandem queueing system with the URG

ships acting as servers

„

Most of the analytical work in queues with a number of facilities

in series has been restricted to Poisson arrivals and exponential ser-

vice times o The studies have almost entirely concentrated on deriving

steady-state solutions.

An important question to determine in studying tandem queues is the

distribution of output from one channel which then comprises the input

into a subsequent channel

11



Reich [10] has shown that for interarrival and service periods having

normalized chi-squared distribution with four degrees of freedom and

for single-channel queue, the departure epochs do not constitute a nor-

malized chi-squared distribution with four degrees of freedom* Hence,

it is not generally reasonable to expect the outputs to match the in-

puts for a general interarrival pattern, even in the case of the steady

state

o
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3. The Queueing System.

In order to describe a given queueing system, it is necessary

to specify [5] the following components of the system: (1) the in-

put process, (2) the queue discipline, and (3) the service mechanism.

The input process is usually expressed by a probability law gov-

erning the arrival of customers at the counter where service is pro-

vided. Suppose the customers arrive at the counter at times t , t
,

J- L.

.... t (t,<t~< ...<0. Let T = t , - t denote the difference
' n 1 2 n n n+1 n

between the time of arrival of the (n + l) s-t and the n™ customers.

The input process is given by the probability law governing the

sequence of arrival times \T \ , However, the queueing system con-

sidered in this paper does not have a probabilistic input. But

rather the customers (combatant ships) are initially distributed

throughout the system of counters (URG ships) and then the queueing

process begins.

The queue discipline is the rule or moral code determining the

manner in which customers form a queue and the manner in which they

behave while waiting. In this paper we assume that the queue dis-

cipline can be expressed as "first come, first served". (Other pos-

sibilities are to select a customer at random with respect to order of

arrival, or to take the last customer to arrive rather than the first,

or to service customers in batches, or to select a customer according

to some priority rule, or and so forth.)

The service mechanism can be described as follows: Let the

random variable E denote the time required to serve the n*" cus-

tomer; hence the probability law governing the sequence of service

times £E < expresses the service mechanism of the queueing system.

13



It is natural to assume that the successive service times E-,, E_, •««,

E , .». are statistically independent of one another and of the se-

quence of interarrival times } T < and that they have the same dis-

tribution function B(E)
t
E £ (0, co ) t There are many distribution

functions of interest, one of which is

B(E) = 1 - e~uE , for E£0

= 0, for E*0,

This is called the exponential distribution and it is widely used in

the investigation of queueing systems. In the above, u is the ex-

pected or mean service time. The exponential distribution of ser-

vice times will be used in this paper since observational data are

lacking and it often provides a good fit to real life situations.

14



4« Representation of the Queueing Process

,

The stochastic processes arising in the theory of queues are in

general non-Markovian and it is only for systems of the type having

Poisson arrivals, exponential service , and multi-servers in parallel

that the associated processes are Markovian 4 Hence it is necessary

to consider various ways of representing queueing systems so that

their stochastic properties can be ascertained.

In order to investigate the stochastic properties of a partic-

ular queueing system, it is necessary to formulate a mathematical

representation (model) which is based on (1) the input process,

(2) the queue discipline, and (3) the service mechanism which char-

acterize the queueing system,, A queueing system is describable at

any fixed point in time in terms of a state vector; such a vector

must contain sufficient information for calculation of the joint dis-

tribution function of its components at all subsequent points of time,

The simplest example of a state vector consists of the single element

n, the number in the system, but in more complicated cases we may re-

quire such components as the elapsed time since the last arrival, or

the elapsed time since each customer in service commenced service a

It is usually of importance to discover if the joint distribu-

tion function depends on the time since the state vector had a known

value. In many cases after sufficient time the function becomes in-

dependent of time and of the known state „ Such systems are said to

reach a "steady state", described by the limiting form of the dis-

tribution functions Other factors of interest are the distribution

function for customer waiting time, mean and variance of the number

in the system, the number served, the probability of waiting longer

15



than a given period, the expected number of idle servers (for multi-

server queues), and the expected idle time for each server,*

There are several main techniques which have been used in the

representation and analysis of a queueing system. One of the most

often used is the differential-difference equation method This

technique is applicable to queueing systems which have Poisson in-

puts, exponential service, and servers in parallels, Queues of this

type are commonly called Poisson queues and have Markovian properties

The method, as the name implies, relies on the formation of a series

of differential equations connecting the probabilities of the states

and substates with their first derivatives „ Specifically, if we let

X(t) denote the number of customers in the queue at time t, then

ix(t), t> 0} is a Markov process with a denumerable number of states

and its stochastic properties can be derived from the Kolmogorov dif-

ferential equations representing the process „ Now if P(t) = (p (t) )

ij

denotes the matrix of transition probabilities associated with the

process \X(t)
#

t > 0^ , then P(t) satisfies the system of Kolmogorov

equations

-~- P(t) = P(t)A(t),

where A(t) = ( a.
.
(t) ) is the matrix of infinitesimal transition prob-

abilities and P(0) = I, the identity matrix In order to solve these

equations, it is necessary to specify the functions a..(t), which in

the study of queueing systems will generally be functions of time, and

the parameters characterizing the interarrival-time and service-time

distribution functions. The theory of queues based on the Kolmogorov

equations can be divided into two areas or parts
6
one of which is called

non- equilibrium theory and the other equilibrium theory „ In the equilib-

16



rium theory interest centers on the probabilities"^ = lim P (X(t) = x)

,

i.e., one is interested in finding the limiting or stationary probability

distribution^ \ for the states x. These probabilities, if they exist,

are obtained by solving the Kolmogorov equations when the time deriva-

tive is put equal to zero, since in the steady-state the probabilities

do not change with time and the time variable may be dropped. In the

non- equilibrium theory interest centers on the probabilities that at

time t the queue is of length x, i.e., P( X(t) - x) . These probabil-

ities are obtained by solving the system of Kolmogorov equations. This

technique will be used in Section 7 for deriving the steady-state dis-

tribution of a special type queueing system.

Other techniques of interest are the Embedded Markov Chain

Method [6], Lindley's Integral Equation Representation [8], Integro-

differential Equation Method of Takacs [12], and the Multi -dimensional

state-space approach [4]

.

The various techniques mentioned above are described as being

analytic as opposed to simulation and Monte Carlo methods. Instead

of making a mathematical analysis of the properties of the queueing

system [2], it may be advisable to examine the process by recon-

structing its behavior using service times, arrival times, etc., de-

rived from random numbers. This approach is particularly useful when

the process is so complicated that mathematical solution is likely to

be difficult or impossible, and especially when the behavior is re-

quired under very special and clearly defined conditions and no math-

ematical solution is immediately available. It may then happen that

empirical sampling is likely to lead to an answer in a reasonable time,

whereas the effort needed to produce a mathematical solution may be

17



difficult to gauge.

"Hie simplest procedure is to use random numbers to construct a

direct realization of the queueing process corresponding as closely

as possible to the real system. In order to obtain more precise

conclusions for a given amount of effort, it may, however, be profit-

able to modify the process that is sampled* There is no universally

accepted terminology for this method, but the term Monte Carlo is

often reserved for a procedure in which the process sampled has been

modified to increase precision. For example, if the quantity of in-

terest can be broken into components some of which can be calculated

theoretically and some not, precision will usually be increased by

sampling only the components that cannot be found theoretically.

The term simulation is used when the process sampled is a close

model of the real system. An advantage of simulation over a Monte

Carlo method is that the detailed results give a direct qualitative

impression of what the system should look like under the conditions

postulated. Both the analytic approach and the simulation tech-

niques will be used to investigate the system considered in this paper.

18



5. Two Queues in Series.

For an infinite input with Poisson distribution with parameter

X to the first of two channels in series, with exponential service

times having parameter u. and u_ respectively, at each channel (a

customer must go through both service channels) , Jackson [3] has

derived the Kolmogorov equations involving P(n ,n ,t) , the prob-

ability that there are n units in the first stage of the system

(including service) and n in the second at time t. The steady-

state solution is obtained by setting the derivative portion of

these equations equal to zero and solving for P(n-.,n
2
). The steady-

state solution is

?{*.^S. (-Af^^tMl (5.1)

The value of P(0,0) is determined to be

assuming that ~X and X 1.

u
l

u
2

An interesting result is expressed by equation 5.1. It may

be shown in the case of a single stage queue having Poisson (parameter X )

inputs and exponential service times (parameter u) that the steady- state

probability of having n units in the system is given by

p(-^= (-5rT*W-

19



Thus equation 5.1 shows that in a two stage Poisson queueing system

the stages act independently of one another in the steady-state con-

dition.

Nelson [9] has derived the waiting time distribution for this
t

type queue, P( X X. * T), as a function of the waiting time distri-

bution at the individual stages P(X. £ T), j = 1,2. He assumes
- J

•f"V»

for the probability of waiting longer than time T at the j stage

where

*v *^ D)

The culmulative probability distribution for the total waiting

time through both stages is shown to be

V

where

%* &\j* c^-c< )
t
^A

20



and c. $ c. for i f j. In arriving at this result Nelson makes use

of the results of Burke's investigation of the output of a queueing

system. Burke [1] has shown that the steady- state output of a

queue with s channels in parallel, with Poisson input and parameter \

and the same exponential service time distribution with parameter u

for each channel is itself Poisson distributed with the same para-

meter X as that of the input distribution. He also showed the in-

dependence of the inter- departure- interval random variables and the

state of the system at the end of the interval.
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6, Formulation of the Problem

,

The prime desideratum in replenishing a combatant force at sea by

means of an underway replenishment group is to replenish it as quickly

as possible while observing the necessary rules of safety. The time

required to conduct the replenishment is of basic importance due to

the extreme vulnerability of the combatant force during replenish-

ment operations. In addition, the combatant force has little oper-

ational value while being replenished; also both combatant and re-

plenishment forces are usually operating on a tight and inflexible

schedule. For these reasons, the replenishment at sea operation must

be conducted with upmost dispatch consistent with safety. One in-

tuitive solution to the problem of minimizing the force replenishment

time is to minimize the individual ship replenishment times. Other

solutions involve finding optimal combinations of initial conditions

and sequence for replenishment. Thus in attempting to minimize the

individual ship replenishment time, one must investigate the behavior

of the combatant ships during the underway replenishing process. This

fact makes necessary a quantitative analysis of the underway replen-

ishing process, with a view towards more efficient utilization of the

underway replenishment group. It thus seems natural to apply the theory

of queues in the analysis. Let us consider the main aspects of the

situation under the three headings introduced by Kendall to character-

ize a queueing process.

As a preliminary step, consider the pattern of events prior to the

actual replenishment operation. The underway replenishment group (URG)

,

composed of refueling ships, ammunition ships, and reprovisioning ships

22



is in one of the prescribed underway replenishment formations and steam-

ing on a suitable course. The combatant force is in formation astern

of the URG. The ships of the combatant force awaiting to be replen-

ished have been assigned a sequence for replenishment based upon in-

dividual ship requirements* For example, one ship of the combatant

force might first receive fuel, then ammunition, then food, and finally

spare parts. Another ship would probably be assigned a different se-

quence; however, if ships happen to be assigned identical sequences

they receive services in order of seniority with the senior most ship

goint first, the next senior second, and so forth. The basic problem

to be solved at this point can be stated as follows: What sequences

should be assigned to the respective combatant force ships so as to

minimize the overall force replenishment time? This is an example of

the job-shop sequencing problem [11]. It is a problem for further study

and will not be considered here. When the signal is given to begin the

replenishment, the combatant ships break formation and go to the first

URG ship in their respective replenishment sequences where they either

commence replenishment or join a queue. Thus one can visualize a

series queue in which the customers are combatant force ships pro-

ceeding in accordance with their respective sequences and the servers

are URG ships.

First, there is the input process. In our context this is es-

sentially the process by which the combatant force ships break forma-

tion and feed into the URG. Thus if the combatant force is composed

of N ships and the URG is composed of M ships we may visualize M que-

ues and associated waiting lines arranged initially in a manner sim-

ilar to the diagram of Figure 1. In our first analysis we shall as-

sume that the input process is not as shown in Figure 1, but rather

23



Typical Initial Arrangement for Underway-

Replenishment of a Combatant Force by a URG

£34 (2i A - (*)

A

A

A

A

A
A

A

A

Legend:

i
th URG Ship,
1=1, ... , M

Figure 1

, A • Combatant
Force Ship
(N of them)

/

Initial Arrangement Assumed for First Analysis

£>
A

A

A
Legend

:

A i i
th URG Ship,

i = 1, ... , M

Figure 2

A J Combatant,
Force Ship
(N of them)



as shown in Figure 2, with all N ships queueing up to the first URG

ship. This assumption is made to make the analysis tractable and rep-

resents a particular case of the input process of Figure 1, Second,

there is the queue discipline. In the first analysis we shall require

that the combatant force ships join the URG at the 1
st URG ship and

proceed through the sequence of URG ships, leaving the system only when

all M stages have been completed. First come, first served discipline

will be used at each stage. Third, there is the service mechanism,

which is given by the frequency distribution of service times* We will

make the simplifying assumption that the service rate for the i URG

ship is exponential with parameter u. This assumption is made for

three reasons: (1) observational data are lacking, (2) it is desired

to make the analysis tractable, and (3) the exponential distribution

often gives a good fit to real life.

Before proceeding with the analysis it should be noted that one

fundamental difference between the general queueing problem and the

problem at hand is that we are not concerned with the limiting case,

that is an infinitely long queueing process. The queue associated with

this problem has a finite bound N as a datum of the problem and must

be included in the analysis. In order to do this we will impose the

artificial restriction that upon completing the replenishment at the

M URG ship, a combatant ship rejoins the system again at the 1st URG

ship. This technique allows us to have in effect an infinite queueing

system.

In one sense, the problem of minimizing force replenishment time

is mathematically trivial because it is finite. In principle, one

could deal with this problem simply by enumerating all possible solu-

25



tions, evaluating each according to whatever criterion is relevant and

selecting the best. This approach, of course, is feasible only for

problems of small magnitude. For example, a typical replenishment

operation involving M = 4 URG ships and N = 20 combatant force ships

has 1771 different possible sequences and even with the aid of high-

speed computing equipment an enumeration of all solutions is not fea-

sible. In general, the feasibility of straight forward enumeration is

perhaps even more remote for large scale problems than the simple ex-

ample noted here. Because the problem is finite, even though possibly

enormous, a "method of solution" cannot merely be a way of arriving at

a correct answer, but must be a technique where by this answer is ob-

tained at low computational cost, at least relative to the cost of

simple enumeration and evaluation. Thus, the object is nor merely to

solve, but to solve efficiently and the analytic approach to solving

the problem represents an attempt at achieving an efficient solution.

26



7, Analytic Approximation to a Solution.

As an analytic approximation to a solution of the problem of min-

imizing combatant force replenishment time we consider a system v*ith M

sequential stages in a loop; each stage acts as a single server. The

system serves N units, each of which goes through all stages in suces-

sion and continuously repeats the process. The technique which we pre-

sent for analyzing a system of this type was originally formulated by

Koenigsburg [7]

.

A state is indicated by (n-^n^, , .., n.) where 2. n^ = N and n^

indicates the number of units being served or waiting for service at

the i stage. A waiting unit has completed service at the (i - l)
st

stage. The probability of being in a state (n-.,n2# . .., n^) is writ-

ten P(npn
2

, ..., i^).

Transitions between states occur when a unit enters or leaves a

stage. We have assumed that the service rate in each stage is a ran-

dom variable which can be described by a mean value u. and a distribu-

tion which is exponential, i.e.,

u^ £ t = probability that a unit being sen iced has com-
pleted in the time interval between t and t + At
(u = mean service rate)

.

i

The probability that the system is in state (n ,n , . .,, n ) at

t = t + At is expressed as the sum of probability terms. Since we as-

sume that transitions only occur from nearby states, they can occur when

the system was in the states (n,,n
2

, ..., n. + l,n. - 1, ..., n. ) and

(n #n » ..,, n.. + !in
i+1

" 1» •••• nfo).
a* the time t.

27



Then

* ^x

+ '9(V^^ai-»0/A
^ s

)
lt)u^*t

This can be written as

/a

The left-hand side is the defined derivative of P(n ,n , «.., n^) so we

can write

/a

+ I»^K.^ 1
* <V N

j <v x
* <\*i » ^M

N=^

28



subject to the following restrictions:

(a) V n. = N
1

(b) if n. =0, then the u. term = (term does not enter into

equations)

(c) if n. , - 1 < 0, then the u term = 0.
l+l ' i

(d) the Mtn stage is linked back to the first stage; i.e., trans-
itions occur from (n, - 1, n

2
, ••«,&.+ 1) to (n,,n

2
, . .., tl.)

Since this technique is used to arrive at only an approximate analytic

solution, we are interested in the steady-state condition, i.e.,

(7.1)

Thus there are (N + M - 1)
! equations in the same number of unknowns

(M - 1)! N!

(this is the number of ways of putting N things into M boxes any num-

ber to a box)

.

It may be verified by direct substitution in equation (7.1) that

this system of equations has solutions of the fomr

V^^^/Om) * - „,

u?-*'

V U»^ UM
?^i»/Oi"', 0>

)

where

V^n.o.o^o)
L *\ *x **'V

M*/V\-\

tti

/A

*- ft (x.-a^

-i-\

2"
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and

UA

Now given a particular URG ship, say i, it is working whenever

n.>l. The fraction of the time it does not work is given by

4«

/V\

where the i in -Zw _-, indicates X. is omitted from the summation.

fV»

The mean number of units at the i stage is given by

*—:r~ 1— * «

The mean number of units awaiting service at the i stage is given
by

w, * ^ C*jtO ?V*V»>aO

o% rv

30



The mean cycle time (the time to complete service at all stages) is

N5\ ^

From this we see that the mean cycle time is independent of the order

in which the URG ships are arranged.

In the special case where all URG ships have the same mean service

time, i.e., where u = u = ... = u and X, = X„ = ... =X., 1, we have99 12 M 1 2 M '

- ^

The mean number of units at the j stage is by definition

/A

/A

«\

l lA
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This result is apparent from the statement of the problem,

The number of units waiting at the j stage is, by definition

n
<V2\

V*
/*%-\

^(^^o-^

N (.N-•O

The mean cycle time is therefore

Tables I, II, and III were compiled using the formulas developed

in this section. Table I shows the results when all ships of the URG

have the same mean service rate (u = 2) with M = 2, Table II shows the

results when one of the URG ships has double the service rate (u =4,

u = 2) of the other with M = 2 and Table III shows the results when one
2

of the URG ships has triple (u = 6, u =2) the service rate of the
J. &

other. It is apparent from these data that a significant reduction in

mean cycle time is obtained by doubling the service rate of one of the

URG ships, but no such reduction is realized over the double service

rate when the service rate of one of the ships is tripled. This lat-

ter fact suggests that the system's performance is dominated by the

slowest server when a large unbalance exist between service rates.
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TABLE I

Analytic Approximation Results
When All URG Ships Have the
Same Mean Service Rate (u=2)

with M = 2

Legend

:

N = number of units in the system

n = mean number of units in each stage

w = mean number of units waiting at each stage

T = time required for a unit to complete M stages (in hours)

N n w

10 5 4.09 5.09

15 7.5 6.56 7.56

20 10.0 9.05 10.05
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TABLE II

Analytic Approximation Results
When One of URG Ships Has Double
the Service Rate of the Other
(u = 4

# u =2) with M 2.
1 2

Legend:

N number of units in the system

n = mean number of units at stage i
i

w.= mean number of units waiting at stage i

T = time required for a unit to complete M stages
(in hours)

N

10

15

20

1 n.
l

w.
l

1 0.985 0.000

2 9.001 8.002

1 0.999 0.000

2 13.999 12.999

1 0.999 0,000

2 19.000 18.000

4.75

7.24

9.75
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TABLE III

Analytic Approximation Results
When One of the URG Ships Has
Triple the Service Rate of the
Other (u - 6, u 2) with
M = 2. 1 2

Legend:

N = number of units in the system

n = mean number of units at stage i
i

w = mean number of units waiting at stage i
i

T time required for a unit to complete M stages
(in hours)

N

10

15

20

1 n.
l

w.
l

1 0,499 0.000

2 9.400 8.500

1 0.500 0.000

2 14.300 13.500

1 0.500 0.000

2 19.200 18.200

4.71

7.22

9.71
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8. Simulation Approach to a Solution

The preceeding section provides an example of an approximate an-

alytic approach to the solution of the problem of minimizing force re-

plenishment time. It should be clear thatthis effort has led to rela-

tively meager results. Intuitively, these results represent only

bounds for a more accurate solution. Moreover, a survey of the lit-

erature indicates that presently there is little sign of a major

breakthrough in achieving a more useful analytic solution to the prob-

lem. In these circumstances, attention will be directed to techniques

which are less than wholly analytic, and in particular to computational

simulation- -or perhaps "computational experimentation" is more appro-

priate phrase if we seek general conclusions rather than specific

solutions. The purpose of experimentation, strictly speaking, can-

not be the determination of optimal sequences. One can compare the

effectiveness of< alternate proposed sequences. Or, one can seek more

generally,to identify, measure, and eventually to predict a variety of

relations between various sequences and their consequences.
.»»

We have developed a computer model of a two-stage series queue

that has initial conditions similar to the initial conditions of the

underway replenishment operation and which simulates the movement of

combatant ships through the URG. The technique used in developing

this simple model may be used for developing the model of a system

with any number of stages.

The model constructed is an incremental time step computer sim-

ulation of the interactions between the combatant force and the URG

during an underway replenishment opera t

..•'.on. The purpose of the model

is to test the various sequences and to make comparisons with the re-
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suits derived from the analytic approximation previously described.

The following assumptions were made in constructing the model:

(1) Service at stage j , i.e., at ship j of the URG, is

exponential with parameter u. (one server at each

stage), j =1,2,

(2) Customers (combatant ships) are initially distributed

among the various stages with I . customers at stage j t

j = 1.2.

(3) Upon completing service at their initial stage, custo-

mers join the queue at the other stage for service.

Upon completing service at this stage they leave the

system,

(4) Service at each stage is first-come, first-served.

(5) Customers pass through the system in the same cyclic

order.

The logical structure of the model is outlined in Figure 3. Since

the service times are exponential, i.e., the probability of a customer

being served has completed in the time interval between t and t + A t

is u- & t t the computational procedures are relatively easy and fit in

very nicely with the incremental time step concept. The flow diagram

demonstrates the pattern which may be used for developing a model which

simulates any number of stages.

In order to use the model the following information must be pro-

vided:

a. N, the number of combatant ships to receive services from the

URG.
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Logia Flow Diagram for Computer Simulation Model

List of Symbols Used in the Flow Diagram:

CT Cumulative total time (used for computing T )

CWC Cumulative total combatant ship-hours in system

At Incremental time step

I. Initial number of dombatant ships at stage i,1
i = 1,2

N Number of ships in the combatant force

NA,NB Temporary storage locations

N. Number of combatant ships at stage i, i = 1,2

NX. Number of combatant ships served at i stage,
1

i = 1,2

R Replication size

S Number of replications completed

SUMS Sum of squares of the T's

T Time to process N combatant ships thru system

T Average over the replications of T

T Variance over the replications of T
var *+.

u. Service rate of the i URG ship, i = 1,2

WC Combatant ship-hours spent in the system

WC Average over the replications of combatant
v^ ship-hours spent in the system

st v

Figure 3



togicL Plow Diagram for Computer. Simulation Model (cont.)
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Logia Plow Diagram for Computer Simulation Model (cont.)
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Logic Plow Diagram for Computer Simulation Model (cont.)
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Logic Plow Diagram for Computer Simulation Model (cont.)

f«ow
UkftT

^y

f Sl>TO* of 6VS-

I Poa t*6 Two

/AOVfciwcfciTO NWV \

I urns vtffttt&Mibm o9-\

Figure 3

42



Logic Plow Diagram for Computer Simulation Model (cont.)
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Logic. Plow Diagram for Computer Simulation Model (cont.)
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b. u., the service rate (in ships per hour) of the j- URG ship,

J = 1,2.

c. I., the number of combatant ships initially at stage j,

J 1,2.

d. * t, the incremental time step.

e. R, the number of times a particular set of I , u . and N are
J J

to be simulated, i.e., the replication size.

Although a model of this type may be used to generate data for

various measures of effectiveness applicable to the system, we have

restricted ourselves to examining only two, namely, (1) the mean time,

T , for the system to process N customers, and (2) the total number

of combatant ship-hours required for the replenishment. Others might

be URG ship-hours required for the replenishment, mean idle time for

the i URG ship, etc. The first of the two measures considered may be

compared with the mean cycle time derived from the analytic approxima-

tion in order to test how well the two approaches agree. The second

measure is not obtainable from the analytic approximation and repre-

sents the actual number of combatant ship hours involved in the re-

plenishment. Implicit in the second measure is the following assump-

tion: Combatant ships which have finished their replenishment may pro-

ceed without having to wait for the remainder of the combatant force.

The numerical difference between the second measure and the quantity

T times N represents the number of ship-hours lost if the entire

combatant force waited until the N ship completed its replenishment

before proceeding.

Two measures of performance of the simulation itself have been

included as a check on the statistical significance of the models out-
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put. The first of these is a running average over the replications

of T, where T is the time obtained, from one replication, for the

system to process N units. The average over all the replications of

T is T • The other measure of performance is the running variance

over the replications of T. Figure 4 is a typical graphical plot of

these running variables versus replication size, It is apparent from

this figure that the model is performing satisfactorily, since the

running variables seem to be converging to definite values.

Sixteen cases were investigated by computer simulation in order

to obtain data which could be used for comparison with the analytic

approximation results and for comparison between cases. The results

of the cases investigated are tabulated in Table IV; also included in

Table IV is a listing of the analytic approximation results from

Tables I, II, and III which are of interest. It is interesting to

note for the cases where bcth u = u and I- I that the analytic

approximation and computer simulation results agree very closely.

However, this agreement fails to hold for the other cases and the an-

alytic approximation provides only an upper bound for the simulation

results. The analytic results do describe a characteristic of the

system which is confirmed by simulation data. This characteristic

of the system has to do with the decrease of T as the mean service7 avg

rate of one URG ship is first double, and finally triple, the mean

service rate of the other URG ship. By making the service rate of

the first URG ship double that of the second a significant decrease

in T is noted; however, when the service rate of the first URG ship
avg ' '

is triple that of the second the decrease in T with respect to the
avg

double service rate case is negligible.

46



Hours

6 --I

Plot Showing Variation

ot T
avg and Tvar ^^

Replication Size.

(t^ = 4, u
2

= 2,

I-L = 7, I
2

= 3)

5
~

4 --

3 -

2 --

1--

/

4-0 50

Replication Size

Figure 4.

47



Another interesting result occurs in the cases where u = u . The

data indicate that T is lowest for the case where I =1 and this is
avg 1 2

the case for which combatant ship-hours spent in the system is highest.

The total combatant ship-hours spent in the system is lowest for the

cases where I = N, I = and these are the cases where T is great

-

1 2 avg

est. This result is also noticeable in the other cases where u, f u ,

1 2

Combatant ship-hours spent in the system is an important factor for a

force commander to consider whenever he must deploy individual ships,

say screening destroyers, immediately after they complete replenishment.

In order to minimize this factor, sequences could be assigned that

would take advantage of the result just mentioned. A portion of any

future studies should further investigate this result.
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TABLE IV

Computer Simulation
Results with M = 2

Legend:

N = number of ships in combatant force

M number of ships in URG

u. = mean service rate of i URG ship

I. = number of combatant force ships initially at
1

URG ship i

T = average, over fifty replications, of the time for URG
av2 to process N combatant force ships

T = variance, over fifty replications, of the time for
var

URG to process N combatant force ships

WC average, over fifty replications, of the number of
av8 combatant ship-hours spent in the system

Case N \ \ h l
2

T
avg

T
var

WCavg

1 10 2 2 5 5 5.096 1.136 33.69

2 10 2 2 7 3 5.182 1.963 33.78

3 10 2 2 10 5.432 1.877 30.92

4 10 4 2 10 4.307 1.715 23.79

5 10 4 2 7 3 4.153 1.653 24.67

6 10 4 2 5 5 4.207 1.664 25.11

7 10 4 2 3 7 4.199 1.763 24.28

8 10 4 2 10 4.241 1.680 23.51

9 10 6 2 10 4.149 1.139 21.83

10 10 6 2 7 3 4.183 1.042 23.92

11 10 6 2 5 5 4.036 1,190 22.90

12 10 6 2 3 3 4.078 0.907 21.47

13 10 6 2 4.064 0.781 22.55
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TABLE IV (continued)

ase N ul u
2

X
l h T

avg
T
var

WC
avg

14 20 2 2 20 10.650 5.774 114.08

15 20 2 2 15 5 10.259 4.445 127.16

16 20 2 2 10 10 10.054 4.713 134.08

Analytic Approximation Results of Interest (see Tables I- I I I)

10 2 2 5.09

10 4 2 4.75

10 6 2 4.71

20 2 2 10.05
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9. Conclusion and Recommendations

4

An investigation of the underway replenishment operation has been

conducted by examining two simplified models of the actual process.

The object of the investigation was to determine methods for reducing

the overall time spent in replenishing a combatant force. The first

model considered, an analytic approximation to the actual process, sug-

gested that force replenishment time may be reduced by increasing the

service rate of the URG ships. This increase should not occur for just

one ship of the URG, but must be realized for all of them; since con-

tinuously increasing the service rate of only one of the URG vessels

results in a decreasing marginal gain in overall force replenishment

time. The second model considered was a computer simulation of the

replenishment process. This model confirmed the results of the an-

alytic approximation, but illustrated that the analytic model, in gen-

eral, serves only to provide an upper bound for force replenishment

times. However, in the case of a balanced URG, i.e., all URG ships

have the same service rate, the analytic approximation provides a good

extimate of force replenishment time.

The investigation conducted in this paper could be extended by de-

veloping models which more closely approximate the underway replenish-

ment process. Future models could include URG ships having multi-

servers and combatant force replenishment sequences other than cyclic.

In view of the difficulty encountered in achieving even a simple an-

alytic model, the most useful future models will probably be computer

simulations. Although the exponential distribution of service times

probably gives a good approximation for use in investigating the under-
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way replenishment operation
t
other distributions, such as the Erlang,

should be considered in future studies.
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